## Instructions for sketching a quadratic graph.

1 Find the roots of the equation.
2 Find the completed square form.
3 Find the $y$ intercept.

$$
3 x^{2}+11 x+10=0
$$

1 Find the roots of the equation. This tells us where the quadratic graph goes through the $x$-axis.
i Determine the values of $\mathrm{a}, \mathrm{b}$ and c so that $a x^{2}+b x+c=0$. In this case, $\mathbf{a}=\mathbf{3}, \mathbf{b}=\mathbf{2 3}$ and $\mathrm{c}=10$.
ii
Multiply $a$ and $c$ together. $\mathbf{3} \times \mathbf{1 0}=\mathbf{3 0}$.
iii $\quad$ Find the factor pairs of ac. $1 \times 30,2 \times 15,3 \times 10,5 \times 6 ;-1 \times-30,-2 \times-15$,
$-3 \times-10,-5 \times-6$
iv Determine which factor pair of ac sums to b. $6+5=\mathbf{1 1}$.
$v$ Rewrite the equation, splitting the middle term: $3 x^{2}+6 x+5 x+10$
vi Group and factorise the equation: $\mathbf{3 x}(x+2)+5(x+2)$
$v \quad$ Put the terms outside the parenthesis into the first set of brackets and the terms inside the brackets into the second set. $(3 x+5)(x+2)$.
vi Equate the equation to 0 and solve:

$$
(3 x+5)(x+2)=0
$$

$$
\begin{array}{rlrl} 
& 3 x+5 & =0 \\
& \therefore & 3 x & =-5 \\
& \therefore & x & =-\frac{5}{3}
\end{array}
$$

OR

$$
\begin{aligned}
x+2 & =0 \\
\therefore x & =-2
\end{aligned}
$$

So the roots or solutions of the equation are $x=-\frac{5}{3} \quad$ or $\quad x=-2$
achildsguideto

2 Find the completed square form. This will give us the co-ordinates of the stationary point.

$$
3 x^{2}+11 x+10=0
$$

i
Take out the factor for the $\mathrm{x}^{2}$ and x terms (ie a and b)

$$
3\left[x^{2}+\frac{11}{3} x\right]+10
$$

ii $\quad\left(x+\frac{b}{2}\right)^{2} \rightarrow 3\left[\left(x+\frac{11}{6}\right)^{2}\right]+10$
iii
iv

Change the sign of the x co-ordinate and get the co-ordinates of the stationary point.

$$
\left(-\frac{11}{6},-\frac{1}{12}\right)
$$

3 Find the $y$ intercept
Complete the square

$$
3\left(x+\frac{11}{6}\right)^{2}-\frac{1}{12}
$$

$$
\left(x+\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2} \rightarrow 3\left[\left(x+\frac{11}{6}\right)^{2}-\left(\frac{11}{6}\right)^{2}\right]+10 \rightarrow 3\left[\left(x+\frac{11}{6}\right)^{2}-\left(\frac{121}{36}\right)\right]+10
$$

Multiply by the common factor

$$
3\left(x+\frac{11}{6}\right)^{2}-\left(\frac{121}{12}\right)+10
$$

Change the +10 to twelfths to make the calculation easier

$$
3\left(x+\frac{11}{6}\right)^{2}-\left(\frac{121}{12}\right)+\frac{120}{12}
$$

(20-2

The $y$ intercept is at the point $(c, 0)$ so in this case, the $y$ intercept is at point $(\mathbf{1 0}, \mathbf{0})$.


A magnified view of where the parabola crosses the x-axis is shown below.


